Architectural Railing Division
C.R.Laurence Co., Inc.

2503 E Vernon Ave.
Los Angeles, CA 90058
(T) 800.421 .6144
(F) 800.587 .7501
www.crlaurence.com

SUBJ: CRL SMOKE BAFFLE BASE SHOES - B5B AND B7B

The CRL smoke baffle base shoes are intended to provide a method of mounting glass of various thicknesses overhead. A complete assembly consists of the base shoe(s), mounting fasteners, tempered glass light(s) and through glass fasterners. It may also be used to mount glass by supporting along a wall or any combination of 1,2 or 3 sides. The smoke baffle assembly is suitable to restrict airflow and smoke movement along ceilings to assist in HVAC control, smoke detector and fire sprinkler isolation. When installed partial height the smoke baffle assembly is not intended to meet any building code or fire code requirements for area separation, smoke partitions or smoke barriers. The smoke baffle base shoes may be used to construct full height smoke partitions in accordance with International Building Code Section 711 - Smoke Partitions. Layout and size of the smoke baffle assemblies is outside the scope of this report. The smoke baffle base shoes may also be used to mount glass for other purposes including glass store fronts, glass partitions and decorative glass. Typically the assemblies shall be capable of resisting the following minimum loads or other loads as determined appropriate for the specific application:

Concentrated live load $=50 \#$ on one sf any location.
Distributed load $=5 \mathrm{psf}$ perpendicular to the entire area either direction.
Wind load: When applicable to the installation shall be site determined.
Refer to IBC Section 1607.7.1
All allowable loads shown in this report are Allowable Stress Design (ASD) loads (service level loads.)

Glass stresses are designed for a safety factor of of 4.0 (IBC 2407.1.1) where human impact is likely. Allowable stress for wind and seismic loads are based on ASTM E1300-12a. Aluminum components are designed in accordance with the 2015 Aluminum Design Manual and prior editions. Aluminum extrusions comply with ASTM B221. Stainless steel screws comply with ASTM A564. Glass shall be fabricated in accordance with ASTM C1048.

The engineering properties provided in this report are intended to assist a qualified designer to specify a system capable of complying with the International Building Code, all editions and local adaptations. A qualified individual must evaluate the suitability, applicability, loading conditions and strength for a specific installion. The system specifier is responsible for verifying that the system meets specific jurisdictional and project requirements. This report is not a substitute for a project specific evaluation.

CONTENTS:

Item	Page	Item	Page
Typical Installations	3	Glass Attachment	$12-16$
Loads	4	B5B	$17-19$
Glass Strength	$5-7$	B7B	$20-22$
Laminated Glass	$8-14$	Alternative Anchors	$23-24$

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Typical Installations:

Glass attached to base shoe with screws through glass at 12 " on center.
Base shoe attached to structure with $1 / 4$ " screws through base shoe to ceiling structure at 12 " on center.

Allowable load is lesser of glass, base shoe, or anchorage strength or deflection limits
MOMENT STRENGTH - SUMMARY

GLASS THICK- NESS Nominal	$\begin{aligned} & \text { GLASS } \\ & \text { LIVE LOAD } \\ & \text { M ALL }^{\text {ft-Ib }} \end{aligned}$	GLASS WIND LOAD $\mathbf{M}_{\text {ALL }} \mathrm{ft}-\mathrm{lb}$	ASTM F879 Cond AF OR 1/4X6 WOODSCREW ft-lb	SAE J429 Grade 8 ft-lb	Kwik HUSEZ (KH EZ) 1/4" ft-lb
B5B BASE SHOE					
1/4	47.96	84.73	77.344	136.64	59.87
5/16 LAM	39.40	69.61			
3/8	126.03	222.64			
7/16 LAM	81.28	143.60			
1/2	219.96	388.60			
9/16 LAM	114.51	202.31			
B7B SHOE					
5/8	354.03	625.44	100.125	176.89	77.5
11/16 LAM	193.07	430.08			
3/4	516.96	913.29			
13/16 LAM	277.94	491.03			

Lowest moment strength will control- use allowable load tables found in this report.
Laminated glass strengths are based on PVB interlayer.
Laminated Annealed glass allowable load is $1 / 4$ of value shown above.
Laminated Heat strengthened glass allowable load is $1 / 2$ of value shown above.
Where deflections at service loads may be a concern verify deflections, see pages 6,7 and 12 .
Some installations may require use of laminated glass - verify with local building official to verify if laminated glass is required. Glass must be fully tempered when not laminated.

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329

253-858-0855/Fax 253-858-0856 elrobison@narrows.com

LOADS:

Dead load =
$1 / 2$ " glass, weight $=6.5 \mathrm{psf}=\mathrm{Dg}_{\mathrm{g}}$
B5B base shoe $\quad=2.78 \mathrm{plf}=\mathrm{D}_{\mathrm{b}}$
$3 / 4$ " glass, weight $=9.8 \mathrm{psf}=\mathrm{D}_{\mathrm{g}}$
B7B base shoe $\quad=4.12 \mathrm{plf}=\mathrm{D}_{\mathrm{b}}$
$\mathrm{D}=\left(\mathrm{Dg}_{\mathrm{g}} * \mathrm{Ag}_{\mathrm{g}}+\mathrm{D}_{\mathrm{b}}\right)^{*} \mathrm{~L}$
Where $\mathrm{A}_{\mathrm{g}}=$ glass height
L = length
For typical interior installation
Live Loads
5 psf or 50 \# on 1 sf
$\mathrm{W}_{\mathrm{L}}=5 \mathrm{psf} * \mathrm{H}$ plf
$\mathrm{M}_{\mathrm{L}}=5 \mathrm{psf}{ }^{*} \mathrm{H}^{2} / 2$ '\#
Where:
$\mathrm{H}=\mathrm{H}_{\mathrm{s}}+\mathrm{H}_{\mathrm{g}}$
$\mathrm{M}_{\mathrm{P}}=50 \# * \mathrm{H}_{\mathrm{g}}$
Resisted by lesser of full glass light length or $2 * \mathrm{H}_{\mathrm{g}}+1$ '

Wind loads must be evaluated for the project specific conditions. Smoke baffle wind loads may be dependent on specific HVAC conditions or other factors that must be determined for the specific installation. At a minimum the smoke baffles must be designed for 5 psf uniform load over the entire area.

Seismic loads- earthquake loads must be calculated based on ASCE 7-10 Chapter 13 using the project specific criteria.

GLASS STRENGTH

All glass is fully tempered glass conforming to the specifications of ANSI Z97.1, ASTM C 1048-97b and CPSC 16 CFR 1201. For the glass the minimum Modulus of Rupture F_{r} is $24,000 \mathrm{psi}$. The Safety Factor of 4.0 applicable to glass subject to human impact is based on IBC Section 2407. For wind and seismic loads allowable stress $=10,600$ psi per ASTM E1300-12a.

Allowable glass bending stress: $24,000 / 4=6,000 \mathrm{psi} .-$ Tensile stress calculated. Allowable bending stress: $24,000 / 4=6,000 \mathrm{psi}-$ transformed tensile stress.

Bending strength of glass for the given thickness:

$$
\mathrm{S}=\frac{12 \cdots *(\mathrm{t})^{2}}{6}=2^{*}\left(\mathrm{t}_{\mathrm{min}}\right)^{2} \mathrm{in}^{3} / \mathrm{ft}
$$

$\mathrm{t}_{\text {min }}=$ minimum glass thickness per ASTM E1300-12a or as specified.
$\mathrm{M}_{\mathrm{allL}}=6,000 \mathrm{psi}^{*} \mathrm{~S}^{\text {in }} 3 / \mathrm{ft}$ For live loads
$\mathrm{M}_{\text {allw }}=10,600 \mathrm{psi}^{*} \mathrm{~S}$ in $3 / \mathrm{ft}$ For live loads
Maximum glass height can be determined by setting the calculated glass moment equal to the allowable moment:
$M_{\text {allw }}=w^{*} H_{\mathrm{g}}{ }^{2} / 2$; or
$\mathrm{M}_{\mathrm{allL}}=\mathrm{L} * \mathrm{H}_{\mathrm{g}}$
$\mathrm{H}_{\mathrm{g}}=$ glass height, $\mathrm{w}=$ uniform load,
$\mathrm{L}=$ live load at edge of glass typically not required for smoke baffle applications
$\mathrm{H}_{\mathrm{g}}=\mathrm{MallL}_{\text {all }} / \mathrm{L}$
$\mathrm{H}_{\mathrm{g}}=\left(2 * \mathrm{M}_{\text {allw }} / \mathrm{w}\right)^{1 / 2}$
Minimum length of glass required to support concentrated load, P at corner of light-
Assume triangular shear distribution down glass with 33% stress concentration at loaded corner end- no connection at free edge of glass to adjacent light:
$\mathrm{P}=50 \mathrm{lb}$ concentrated load typical for smoke baffle applications. P may be 200 lb concentrated for installations where glass is within 42 " of a walking surface or is used as a balustrade with shoe at the base.
$\mathrm{b}=4 / 3 * \mathrm{PHg}_{\mathrm{g}} / \mathrm{MallL}=$
Or for allowable loads based on height:
$\mathrm{L}=\mathrm{MallL} / \mathrm{Hg}_{\mathrm{g}}$
$\mathrm{w}=2 * \mathrm{Mallw}_{\mathrm{a}} / \mathrm{Hg}^{2}$
$\mathrm{P}=3 / 4 * \mathrm{bM}_{\text {alli }} / \mathrm{H}_{\mathrm{g}}$

For $1 / 2$ " glass $S=2 *(0.469)^{2}=0.44 \mathrm{in}^{3} / \mathrm{ft}$
$\mathrm{M}_{\text {all }}=6,000 \mathrm{psi}^{*} 0.44 \mathrm{in}^{3} / \mathrm{ft}=2,640 \#^{\prime} / \mathrm{ft}=220 \#$ ' For live loads
$\mathrm{M}_{\text {allw }}=10,600 \mathrm{psi} * 0.44 \mathrm{in}^{3} / \mathrm{ft}=4,664 \#$ " $/ \mathrm{ft}=388.67$ \#' $^{\prime}$ For wind or seismic loads
Maximum glass height for wind load:
$\mathrm{H}_{\mathrm{g}} \leq \sqrt{ }\left(2 * 777.34 \#^{\prime} / \mathrm{w}\right)$
For 3/4" glass $\mathrm{S}=2 *(0.719)^{2}=1.034 \mathrm{in}^{3} / \mathrm{ft}$
$\mathrm{M}_{\text {all }}=6,000 \mathrm{psi}^{*} 1.034 \mathrm{in}^{3} / \mathrm{ft}=6,204 \# \prime / \mathrm{ft}=517 \#$ ' for live loads
$\mathrm{M}_{\text {allw }}=10,600 \mathrm{psi} * 1.034 \mathrm{in}^{3} / \mathrm{ft}=10,960 \#^{\prime \prime} / \mathrm{ft}=913.4$ \#' $^{\prime}$ For wind or seismic loads
$\mathrm{H}_{\mathrm{g}} \leq \sqrt{ }\left(2^{*} 913.4 \#^{\prime} / \mathrm{w}\right)$
$\mathrm{w} \leq 2 * 517 \#^{\prime} / \mathrm{Hg}^{2}=1,034 / \mathrm{Hg}_{\mathrm{g}}{ }^{2}$
$\mathrm{L}_{\text {min }} \geq \mathrm{H}_{\mathrm{g}} * 50 / 517=0.0967 * \mathrm{Hg}_{\mathrm{g}}$ for $3 / 4$ " glass
Allowable deflection of glass: There is no applicable code limit on the deflection of glass used in this type of installation. For practical purposes the deflection at the glass edge should be limited to $\mathrm{H}_{\mathrm{g}} / 24$ or $\mathrm{H} / 12$ depending on project requirements.
$\Delta=\mathrm{wH}_{\mathrm{g}}{ }^{4} /\left(8 \mathrm{Et}^{3}\right)$
Where:
$\mathrm{E}=10,400,000 \mathrm{psi}$
$t=$ average glass thickness, $0.5 "$ for $1 / 2 "$ glass and $0.75 "$ for $3 / 4$ " glass
setting $\Delta \leq \mathrm{Hg}_{\mathrm{g}} / 24$
$w_{\mathrm{g}}{ }^{4} /\left(8 \mathrm{Et}^{3}\right) \leq \mathrm{H}_{\mathrm{g}} / 24$
$3 \mathrm{wH}_{\mathrm{g}}{ }^{3} /\left(\mathrm{Et}^{3}\right) \leq 1$
Solving for H_{g} :
$\mathrm{H}_{\mathrm{g}} \leq\left[\left(\mathrm{Et}^{3}\right) / 3 \mathrm{w}\right]^{1 / 3}$
$\mathrm{H}_{\mathrm{g}} \leq \mathrm{t}^{*} 151.35[1 / \mathrm{w}]^{1 / 3}$
Simplifying for $\mathrm{w}=5 \mathrm{psf}$: for 1 ' width
$\mathrm{H}_{\mathrm{g}} \leq 202.63^{*} \mathrm{t}$ in inches
When deflection limits are applied glass deflection will always control.

OTHER GLASS THICKNESSES

The bases shoes will accommodate other glass thicknesses when installed using the appropriate thickness of insert. Roll-in vinyl or grommets are not available to accommodate all glass thicknesses however silicone sealant may be used,
$1 / 4$ " glass is minimum thickness that may be suitable for use in the B5B shoe and will require use of $1 / 8$ " spacer strips on each side of glass or $1 / 4$ " spacer on one side.

Allowable glass light height based on glass stress:

Glass Nominal Thickness	$\mathbf{S ~ i n}^{*} \mathrm{t}_{\text {min }^{2}}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		69.86	49.40	40.33	34.93	28.78	11.51
$5 / 16$	0.1705	93.15	65.87	53.78	46.57	51.16	20.46
$3 / 8$	0.2521	113.24	80.08	65.38	56.62	75.62	30.25
$1 / 2$	0.4399	149.61	105.79	86.38	74.81	131.98	52.79
$5 / 8$	0.7081	189.80	134.21	109.58	94.90	212.42	84.97
$3 / 4$	1.0339	229.36	162.18	132.42	114.68	310.18	124.07

Allowable glass light height based on glass deflection limit of $\mathrm{H} / 24$:

Glass Nominal Thickness	tave in	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
1/4	0.239	21.15	16.79	14.67	13.33	29.79	18.84
5/16	0.312	27.62	21.92	19.15	17.40	44.43	28.10
3/8	0.375	33.19	26.34	23.01	20.91	58.55	37.03
1/2	0.5	44.26	35.13	30.68	27.88	90.14	57.01
5/8	0.625	55.32	43.91	38.36	34.85	125.97	79.67
3/4	0.75	66.38	52.69	46.03	41.82	165.60	104.73

Allowable glass light height based on glass deflection limit of $\mathrm{H} / 12$:

Glass Nominal Thickness	tave in	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
1/4	0.239	26.65	21.15	18.48	16.79	42.13	26.64
5/16	0.312	34.79	27.62	24.12	21.92	62.84	39.74
3/8	0.375	41.82	33.19	29.00	26.34	82.80	52.37
1/2	0.5	55.76	44.26	38.66	35.13	127.48	80.62
5/8	0.625	69.70	55.32	48.33	43.91	178.15	112.67
3/4	0.75	83.64	66.38	57.99	52.69	234.19	148.11

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

LAMINATED GLASS

In some application the code or local jurisdictions may require the use of laminated glass so that all glass is retained in place in the event of glass fracture. Typically glass will be fabricated with two equal plies of glass with PVB interlayer.
Laminated glass may use annealed, heat strengthened or fully tempered glass.
Determine effective thickness of the laminated glass for stresses and deflections based on ASTM E1300-12a appendix X11.
For PVB G $=70 \mathrm{psi}$ and for SentryGlas interlayer use $\mathrm{G}=1,640 \mathrm{psi}(11.3 \mathrm{MPa})$
(from DuPont SentryGlas Effective Laminate Thickness for the Design of Laminated Glass based on $122^{\circ} \mathrm{F},\left(50^{\circ} \mathrm{C}\right)$ and short term load duration)

For two plies of differing thickness:
$\mathrm{h}_{1}=\mathrm{h}_{2}=\mathrm{t}_{\text {min }}$
$h_{v}=0.06$ "
$\mathrm{a}=$ minimum dimension
$\mathrm{h}_{\mathrm{s}}=0.5\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)+\mathrm{h}_{\mathrm{v}}$
$\mathrm{h}_{\mathrm{s}, 1}=\left(\mathrm{h}_{\mathrm{s}} \mathrm{h}_{1}\right) /\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)$
$\mathrm{h}_{\mathrm{s}, 2}=\left(\mathrm{h}_{\mathrm{s}} \mathrm{h}_{2}\right) /\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right)$
$\mathrm{I}_{\mathrm{s}}=\mathrm{h}_{1} \mathrm{~h}_{\mathrm{s} ; 2}+\mathrm{h}_{2} \mathrm{~h}_{\mathrm{s} ; 1}$
$\Gamma=1 /\left[1+9.6\left(\right.\right.$ EIsh$\left.\left._{\mathrm{v}}\right) /\left(\mathrm{Gh}_{\mathrm{s}}{ }^{2} \mathrm{a}^{2}\right)\right]$
effective thickness for deflection:
$h_{\text {ef; }}=\left(h_{1}{ }^{3}+h_{2}{ }^{3}+12 \Gamma I_{s}\right)^{1 / 3}$
effective thickness for glass stress:
$\mathrm{h}_{1 ; \mathrm{ef} ; \mathrm{;}}=\left[\mathrm{h}_{\mathrm{ef} ; \mathrm{w}^{3}} /\left(\mathrm{h}_{1}+2 \Gamma \mathrm{I}_{\mathrm{s}}\right)\right]^{1 / 2}$
$\mathrm{h}_{2 ; \mathrm{ff} ; \mathrm{;}}=\left[\mathrm{hef}_{\mathrm{ef}}{ }^{3} /\left(\mathrm{h}_{2}+2 \Gamma \mathrm{I}_{\mathrm{s}}\right)\right]^{1 / 2}$
5/16" laminated glass

	h_{1}, h_{2}	h_{v}		$\mathrm{h}_{\mathrm{s} ; 1} \mathrm{~h}_{\mathrm{s} ; 2}$		Is	$\mathrm{h}_{\text {s }}$
3mm	0.115	0.06		0.0875		0.0017609	0.175
3 mm	0.115	0.06		0.0875		0.0017609	0.175
	Shortest Dimension	「 PVB	「 SGP	$\mathbf{h e f} ; \mathrm{w}$ PVB	$h_{\text {ef; } ;}$ SGP	$\mathbf{h}_{1 ; e ;}$;o PVB	$\mathbf{h}_{1 ; e ;}$;o SGP
	12	0.0284	0.4066	0.15386	0.226587	0.1742435	0.2499878
	24	0.1048	0.7327	0.17387	0.264592	0.1985429	0.2759749

3/8" laminated glass

	$\mathrm{h}_{1}, \mathrm{~h}_{\mathbf{2}}$	h_{v}		$\mathbf{h}_{\mathrm{s} ; 1} \mathrm{~h}_{\mathrm{s} ; 2}$		Is	$\mathrm{h}_{\text {s }}$
4mm	0.149	0.06		0.1045		0.0032542	0.209
4 mm	0.149	0.06		0.1045		0.0032542	0.209
	Shortest Dimension	「 PVB	「SGP	$h_{\text {ef; } ; w}$ PVB	$h_{\text {ef; } ;}$ SGP	$\mathbf{h}_{1 ; e ; \sigma}$ PVB	$\begin{aligned} & h_{1 ; \text { ef; } ;} \\ & \text { SGP } \end{aligned}$
	12	0.0221	0.3459	0.19556	0.271999	0.2206413	0.3015562
	24	0.0829	0.679	0.21437	0.321178	0.24338011	0.3374735

7/16" laminated glass

	$\mathbf{h}_{1}, \mathbf{h}_{\mathbf{2}}$	$\mathbf{h}_{\mathbf{v}}$		$\mathbf{h}_{\mathbf{s} ; 1} \mathbf{h}_{\mathbf{s} ; 2}$	$\mathbf{I}_{\mathbf{s}}$	$\mathbf{h}_{\mathbf{s}}$	
5 mm	0.18	0.06	0.1200	0.005184	0.24		
5 mm	0.18	0.06	0.1200	0.005184	0.24		
	Shortest Dimension	$\boldsymbol{\Gamma}$ PVB	$\boldsymbol{\Gamma}$ SGP	$\mathbf{h}_{\text {ef;w }}$ $\mathbf{P V B}$	$\mathbf{h}_{\text {ef; }}$ $\mathbf{S G P}$	$\mathbf{h}_{1 ; e f ; \sigma}$ $\mathbf{P V B}$	$\mathbf{h}_{1 ; e \mathrm{e} ; \mathbf{\sigma}}$ $\mathbf{S G P}$
	12	0.0184	0.3045	0.23396	0.312795	0.2635215	0.3477509
	24	0.0696	0.6365	0.25195	0.371469	0.2851395	0.3924824

1/2"-9/16" laminated glass

	$\mathbf{h}_{\mathbf{1}}, \mathbf{h}_{\mathbf{2}}$	$\mathbf{h}_{\mathbf{v}}$		$\mathbf{h}_{\mathbf{s} ; 1} \mathbf{h}_{\mathbf{s} ; 2}$	$\mathbf{I}_{\mathbf{s}}$	$\mathbf{h}_{\mathbf{s}}$	
$6 \mathbf{m m}$	0.219	0.06	0.1395	0.0085236	0.279		
$6 \mathbf{m m}$	0.219	0.06	0.1395	0.0085236	0.279		
	Shortest Dimension	Γ PVB	$\boldsymbol{\Gamma}$ SGP	$\mathbf{h}_{\text {ef;w }}$ $\mathbf{P V B}$	$\mathbf{h}_{\text {ef; }}$ $\mathbf{S G P}$	$\mathbf{h}_{1 ; e f ; \sigma}$ $\mathbf{P V B}$	$\mathbf{h}_{1 ; e \mathrm{ef;} \mathrm{\sigma}}$ $\mathbf{S G P}$
	12	0.0151	0.2646	0.28254	0.363601	0.3178715	0.4051691
	24	0.0579	0.59	0.29974	0.433308	0.3384072	0.4605181

5/8" to 11/16" laminated glass

	h_{1}, h_{2}	h_{v}		$\mathbf{h}_{\mathrm{s} ; 1} \mathrm{~h}_{\mathrm{s} ; 2}$		$I_{\text {s }}$	$h_{\text {s }}$
8 mm	0.292	0.06		0.1760		0.01809	0.352
8 mm	0.292	0.06		0.1760		0.01809	0.352
	Shortest Dimension	「 PVB	「SGP	$h_{\text {ef; } ; w}$ PVB	$h_{\text {ef; }}$ w SGP	$h_{1 ; e f ; \sigma}$ PVB	$h_{1 ; e f ; \sigma}$ SGP
	12	0.0114	0.2125	0.37389	0.457764	0.4202062	0.5113849
	24	0.0441	0.5191	0.39009	0.54567	0.4393579	0.5850297

3/4" to 13/16" laminated glass

	$\mathbf{h}_{1}, \mathbf{h}_{\mathbf{2}}$	$\mathbf{h}_{\mathbf{v}}$		$\mathbf{h}_{\mathbf{s} ; 1} \mathbf{h}_{\mathbf{s} ; 2}$	$\mathbf{I}_{\mathbf{s}}$	$\mathbf{h}_{\mathbf{s}}$	
$\mathbf{1 0 m m}$	0.355	0.06	0.2075	0.0305699	0.415		
$\mathbf{1 0 m m}$	0.355	0.06	0.2075	0.0305699	0.415		
	Shortest Dimension	$\boldsymbol{\Gamma}$ PVB	$\boldsymbol{\Gamma}$ SGP	$\mathbf{h}_{\text {ef;w }}$ PVB	$\mathbf{h}_{\text {effw }}$ $\mathbf{S G P}$	$\mathbf{h}_{1 ; e \text { ef; }}$ $\mathbf{P V B}$	$\mathbf{h}_{1 ; e f ; \boldsymbol{\sigma}}$ $\mathbf{S G P}$
	12	0.0094	0.1816	0.45294	0.538447	0.5088337	0.6022669
	24	0.0365	0.4703	0.46857	0.63988	0.5271931	0.6900814

Laminated glass with unequal ply thicknesses may be used. If specified the effective glass thickness must be calculated using the ASTM E1300-12a Appendix 11 or other acceptable method. The glass strength and deflection must be calculated based on the project specified conditions.

Use of annealed glass is limited to laminated glass only. When annealed glass light size should be limited to no more than 48 square feet times the glass thickness each and length to height ratio should not exceed 4. Because annealed glass is more likely to crack from stress concentrations or thermal stresses extra caution is recommended when annealed glass is specified.

Allowable glass light height based on glass stress-
Laminated with PVB interlayer annealed glass

Glass Nominal Thickness	$\mathbf{S ~ i n}^{*} t_{\text {min }^{2}}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		31.66	22.39	18.28	15.83	5.91	2.36
$3 / 8$		38.82	27.45	22.41	19.41	8.89	3.55
$7 / 16$	0.1626	45.47	32.15	26.25	22.74	12.19	4.88
$1 / 2$	0.229	53.97	38.17	31.16	26.99	17.18	6.87
$5 / 8$	0.3861	70.08	49.56	40.46	35.04	28.96	11.58
$3 / 4$	0.5559	84.09	59.46	48.55	42.04	41.69	16.68

Laminated with PVB interlayer heat strengthened glass

Glass Nominal Thickness	$\underset{2^{*} \operatorname{tin}_{\min ^{2}}}{\mathrm{~S} \operatorname{in}^{3}}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
5/16	0.0788	44.77	31.66	25.85	22.39	11.82	4.73
3/8	0.1185	54.90	38.82	31.70	27.45	17.77	7.11
7/16	0.1626	64.31	45.47	37.13	32.15	24.38	9.75
1/2	0.229	76.33	53.97	44.07	38.17	34.35	13.74
5/8	0.3861	99.11	70.08	57.22	49.56	57.92	23.17
3/4	0.5559	118.92	84.09	68.66	59.46	83.38	33.35

Laminated with PVB interlayer fully tempered glass

Glass Nominal Thickness	$\mathbf{S ~ i n}^{*} \mathrm{t}_{\text {min }^{2}}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		63.32	44.77	36.56	31.66	23.64	9.46
$3 / 8$	0.1185	77.64	54.90	44.83	38.82	35.55	14.22
$7 / 16$	0.1626	90.95	64.31	52.51	45.47	48.77	19.51
$1 / 2$	0.229	107.95	76.33	62.32	53.97	68.71	27.48
$5 / 8$	0.3861	140.17	99.11	80.93	70.08	115.84	46.34
$3 / 4$	0.5559	168.18	118.92	97.10	84.09	166.76	66.71

EDWARD C. ROBISON, PE

Laminated with PVB interlayer - all glass types
Allowable glass light height based on glass deflection limit of $\mathrm{H} / 24$:

Glass Nominal Thickness	$\begin{aligned} & \mathbf{t}_{\text {ave }} \\ & \text { in } \end{aligned}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
5/16	0.1739	15.39	12.22	10.67	9.70	18.49	11.69
3/8	0.2144	18.98	15.06	13.16	11.95	25.31	16.01
7/16	0.2520	22.30	17.70	15.47	14.05	32.25	20.40
1/2	0.2997	26.53	21.05	18.39	16.71	41.83	26.46
5/8	0.3901	34.53	27.40	23.94	21.75	62.12	39.29
3/4	0.4686	41.48	32.92	28.76	26.13	81.78	51.72

Allowable glass light height based on glass deflection limit of $\mathrm{H} / 12$:

Glass Nominal Thickness	tave in	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
$5 / 16$	0.1739	19.39	15.39	13.45	12.22	26.15	16.54
$3 / 8$	0.2144	23.91	18.98	16.58	15.06	35.79	22.64
$7 / 16$	0.2520	28.10	22.30	19.48	17.70	45.61	28.85
$1 / 2$	0.2997	33.42	26.53	23.17	21.05	59.16	37.41
$5 / 8$	0.3901	43.50	34.53	30.16	27.40	87.85	55.56
$3 / 4$	0.4686	52.26	41.48	36.23	32.92	115.66	73.15

For laminated annealed or laminated heat strengthened glass typically glass stress will control and for fully tempered glass deflections will control.

Allowable glass light height based on glass stress-
Laminated with DuPont Sentry Glas Plus interlayer annealed glass

Glass Nominal Thickness	$\mathbf{S ~ i n}^{*} t_{\text {min }^{2}}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		44.02	31.13	25.42	22.01	11.43	4.57
$3 / 8$		53.83	38.06	31.08	26.92	17.09	6.83
$7 / 16$	0.3081	62.60	44.27	36.14	31.30	23.11	9.24
$1 / 2$	0.4241	73.45	51.94	42.41	36.72	31.81	12.72
$5 / 8$	0.6845	93.31	65.98	53.87	46.65	51.33	20.53
$3 / 4$	0.9522	110.05	77.82	63.54	55.03	71.42	28.57

Laminated with DuPont Sentry Glas Plus interlayer heat strengthened glass

Glass Nominal Thickness	$\begin{gathered} S \operatorname{in}^{3} \\ 2^{*} \mathrm{t}_{\min ^{2}} \end{gathered}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
5/16	0.1524	62.26	44.02	35.94	31.13	22.85	9.14
3/8	0.2278	76.13	53.83	43.95	38.06	34.17	13.67
7/16	0.3081	88.53	62.60	51.12	44.27	46.22	18.49
1/2	0.4241	103.87	73.45	59.97	51.94	63.62	25.45
5/8	0.6845	131.96	93.31	76.18	65.98	102.67	41.07
3/4	0.9522	155.64	110.05	89.86	77.82	142.83	57.13

Laminated with DuPont Sentry Glas Plus interlayer fully tempered glass

Glass Nominal Thickness	$\mathbf{S ~ i n}^{*} \mathrm{t}_{\text {min }^{2}}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		88.04	62.26	50.83	44.02	45.71	18.28
$3 / 8$	0.2278	107.66	76.13	62.16	53.83	68.34	27.34
$7 / 16$	0.3081	125.21	88.53	72.29	62.60	92.43	36.97
$1 / 2$	0.4241	146.90	103.87	84.81	73.45	127.24	50.89
$5 / 8$	0.6845	186.61	131.96	107.74	93.31	205.34	82.13
$3 / 4$	0.9522	220.11	155.64	127.08	110.05	285.66	114.26

EDWARD C. ROBISON, PE

Laminated with DuPont Sentry Glas Plus interlayer - all glass types
Allowable glass light height based on glass deflection limit of $\mathrm{H} / 24$:

Glass Nominal Thickness	$\begin{aligned} & \mathbf{t}_{\text {ave }} \\ & \text { in } \end{aligned}$	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
5/16	0.2646	23.42	18.59	16.24	14.75	34.70	21.95
3/8	0.3212	28.43	22.56	19.71	17.91	46.41	29.35
7/16	0.3715	32.88	26.10	22.80	20.71	57.73	36.51
1/2	0.4333	38.35	30.44	26.59	24.16	72.72	45.99
5/8	0.5457	48.30	38.34	33.49	30.43	102.78	65.00
3/4	0.64	56.65	44.96	39.28	35.69	130.53	82.56

Allowable glass light height based on glass deflection limit of $\mathrm{H} / 12$:

Glass Nominal Thickness	tave in	Max Hg (in) for wind load (psf)				Max Hg (in) - Live	
		5	10	15	20	20 plf	50plf
$5 / 16$	0.2646	29.51	23.42	20.46	18.59	49.07	31.04
$3 / 8$	0.3212	35.82	28.43	24.84	22.56	65.63	41.51
$7 / 16$	0.3715	41.43	32.88	28.72	26.10	81.64	51.63
$1 / 2$	0.4333	48.32	38.35	33.50	30.44	102.84	65.04
$5 / 8$	0.5457	60.85	48.30	42.19	38.34	145.35	91.92
$3 / 4$	0.64	71.37	56.65	49.49	44.96	184.60	116.75

For laminated annealed or laminated heat strengthened glass typically glass stress will control and for fully tempered glass deflections will control.

GLASS ATTACHMENT GLASS AT SCREWS

Screw shear strength - 1/4" Countersunk stainless steel flat head screw, Alloy group 1, condition AF, ASTM F593 equivalent.
$\mathrm{F}_{\mathrm{t}} \geq 60 \mathrm{ksi}, \mathrm{F}_{\mathrm{y}} \geq 20 \mathrm{ksi}$
$\mathrm{A}_{\mathrm{v}}=0.0381 \mathrm{in}^{2}$
$\mathrm{P}_{\mathrm{nv}}=0.4 * \mathrm{~F}_{\mathrm{t}} * \mathrm{~A}_{\mathrm{v}}=0.4 * 60 \mathrm{ksi} * 0.0381 \mathrm{in}^{2}=914 \#$
Service shear load on screw:
$\mathrm{V}_{\mathrm{a}}=0.65 * \mathrm{P}_{\mathrm{nv}} / 1.6 * 2$ (double shear) $=743 \#$
Check bearing on aluminum:
$\mathrm{F}_{\mathrm{Ba}}=23 \mathrm{ksi}$-ADM Table 2-23
$\mathrm{P}_{\mathrm{Ba}}=0.49{ }^{\prime} * 0.25 " * 23 \mathrm{ksi}=2,817 \#>743 \#$
Aluminum block shear strength (ADM 5.1.3):
$\mathrm{P}_{\mathrm{sr}}=\left(\mathrm{F}_{\text {su }} \mathrm{A}_{\mathrm{nv}}\right) / n_{\mathrm{u}}=\left(13 \mathrm{ksi}^{*} 0.306 " *(0.562-0.125 / 2) * 2 * 2 / 3=2,649 \#\right.$
Glass bearing
$P_{\text {Bg }}=6,000 \mathrm{psi}^{*} 0.75{ }^{\prime *} 0.5 "=2,250 \#$ (for $1 / 2 "$ glass)
$P_{\text {Bg }}=6,000 \mathrm{psi}^{*} 0.75 " * 0.219 "=986 \#$ (for $1 / 4 "$ glass)
For laminated annealed glass allowable glass bearing load is $1 / 4$ of tempered glass calculated above and for laminated heat strengthened is $1 / 2$ of above.

Glass block shear -
$\mathrm{P}_{\mathrm{gsr}}=0.5 " * 1.25 " * 2 * 3,000 \mathrm{psi}=3,750 \#$ for $1 / 2 "$ glass
Screw shear strength controls the allowable load.
Maximum vertical (dead) load is 743\# per screw for tempered glass.

To check allowable glass area apply 2 times glass deadload to allow for seismic load:
$\mathrm{D}+\mathrm{E}=2^{*}(6.5 \mathrm{psf})=13 \mathrm{psf}$
$\mathrm{A}_{\mathrm{a}}=743 / 13 \mathrm{psf}=57 \mathrm{sf}$
For a typical 10^{\prime} base shoe length the glass may be installed using only 2 screws:
Glass width $=2 * 57 \mathrm{sf} / 10^{\prime}=11.4^{\prime}$

Since dead load, block shear and glass bearing are all directly proportional to the glass thickness all glass thicknesses will have the same maximum area for dead load per screw based on glass strength.

The screw strength will limit the allowable glass dead load per screw-
$\mathrm{D}+\mathrm{E}=2 *(\mathrm{D})$
$A_{a}=743 /(D+E)$

Glass thickness	Area/screw Tempered	Area/screw Heat Strengthened	Area/screw Annealed
$1 / 4$	128.10	82.17	41.08
$3 / 8$	75.82	75.46	37.73
$7 / 16$	74.30	73.95	36.98
$1 / 2$	57.15	43.27	43.27
$9 / 16$	53.07	40.18	40.18
$5 / 8$	45.86	34.72	34.72
$3 / 4$	37.91	28.70	28.70

1 3/8" X 2 3/4" SMOKE BAFFLE BASE SHOE - B5B

For $1 / 2$ " glass - can accommodate monolithic glass from $1 / 4$ " to $1 / 2$ " and laminated glass from $1 / 4$ " to $9 / 16^{\prime \prime}$

6063-T52 Aluminum extrusion

Fully tempered glass glazed in place, using the CRL dry-glazing system for smoke baffles.

Shoe strength - Vertical legs:
Glass reaction by bearing on legs to form couple. Allowable moment on legs:
$\mathrm{M}_{\mathrm{a}}=\mathrm{S}_{\mathrm{l}} * \mathrm{~F}_{\mathrm{t}}$ or F_{c}
$\mathrm{F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{c}}=12.5 \mathrm{ksi}$ (ADM Table 2-23,
Sec 3.4.4)

$\mathrm{S}_{\mathrm{l}}=12{ }^{\prime \prime *} 0.308^{\prime 2} 2 * / 6$
$=0.1897 \mathrm{in}^{3} / \mathrm{ft}$
$\mathrm{M}_{\mathrm{a}}=12.5 \mathrm{ksi}^{*} 0.1897 \mathrm{in}^{3} / \mathrm{ft}$
$=2,372$ " $\# / \mathrm{ft}$
Tension connection between the legs from the through screw is required for the base shoe to support the maximum moment:
Screw tension strength - ASTM F879 Cond AF screws
$\mathrm{T}_{\mathrm{n}}=2703 \#$ from ASTM F 879 table 3
$\mathrm{T}_{\mathrm{s}}=\mathrm{T}_{\mathrm{n}} / 2=2,703=1,350 \#$
Check thread pullout:
$\mathrm{P}_{\mathrm{not}}=1.2 \mathrm{DF}_{\mathrm{ty} 2}\left(0.25-\mathrm{t}_{\mathrm{c}}\right)+1.16 \mathrm{~A}_{\mathrm{sn}} \mathrm{Ft}_{\mathrm{u} 2}\left(\mathrm{t}_{\mathrm{c}}-0.125\right) \quad(\mathrm{ADM} 5.4 .2 .1 \mathrm{Eq} .5 .4 .2 .1-2)$
$\mathrm{P}_{\text {not }}=1.25 * 0.25 " * 16 \mathrm{ksi}(0.25-0.183)+1.16 * 0.539 " * 22 \mathrm{ksi}(* 0.183-0.125)=1,133 \#$
$\mathrm{P}_{\mathrm{ta}}=1,133 / 3=378 \#$

Moment capacity of base shoe with tension tie of a screw every 12 " on center:
$\mathrm{M}_{\mathrm{ta}}=2,372 " \#+378 \#^{*}(2.188-0.813)=2,892 \# / \mathrm{ft}>2,640 " \# / \mathrm{ft}$
When screwed through glass at 12 " on center the full allowable glass moment may be achieved.
Leg shear strength @ bottom
$\mathrm{t}_{\text {min }}=0.308$ "
$\mathrm{F}_{\mathrm{v}}=8.5 \mathrm{ksi}($ ADM Table 2-24, Sec 3.4.20)
$\mathrm{V}_{\text {all }}=0.308 " * 12 " / \mathrm{ft} * 8.5 \mathrm{ksi}$
$=31.4 \mathrm{k} / \mathrm{ft}$

Base shoe anchorage:
For 1/4" machine screw to tapped steel
$\mathrm{T}_{\mathrm{n}}=\mathrm{A}_{\mathrm{sn}} * \mathrm{t}_{\mathrm{c}} * 0.6 * \mathrm{~F}_{\mathrm{tu}}$
where $\mathrm{t}_{\mathrm{c}}=$ steel thickness; $\mathrm{A}_{\mathrm{sn}}=0.539$ " and $\mathrm{F}_{\mathrm{tu}}=58 \mathrm{ksi}$ (A36 steel plate)
$\mathrm{T}_{\mathrm{n}}=0.539{ }^{*} * \mathrm{t}_{\mathrm{c}} * 0.6 * 58 \mathrm{ksi}=18.757 \mathrm{t}_{\mathrm{c}} \mathrm{k}$
Screw service tension load $=1,350 \#$ (previous page)
Plate thickness to develop screw tensile strength $=(2.7 \mathrm{k}) / 18.757=0.144$ " or nut on screw
Maximum allowable moment for 12 " on center spacing and direct bearing of base shoe on steel:
$\mathrm{M}_{\mathrm{a}}=1,350 \# *\left[1.375^{\prime \prime} / 2\right]=928 " \#=77.344 ' \#$ per anchor
For high strength bolt- SAE J429 Grade 8 or stronger:
$\mathrm{F}_{\mathrm{tu}}=150 \mathrm{ksi}$
$\mathrm{T}_{\mathrm{n}}=0.0318 \mathrm{in}^{2 *} 150 \mathrm{ksi}=4,770 \#$
$\mathrm{T}_{\mathrm{a}}=4,770 / 2=2,385 \#$
Plate thickness to develop screw tensile strength $=(4.77 \mathrm{k}) / 18.757=0.254$ " or nut on screw $\mathrm{M}_{\mathrm{a}}=2,385 \# *[1.375 " / 2]=1,640 " \#=136.64$ '\# per anchor

When base shoe is used to hang glass overhead the dead load will reduce the allowable moment because of the screw tension used to support the dead load:
$\mathrm{T}_{\mathrm{t}}=\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{m}} \leq 1,350 \#$
Checked based on $1 / 2$ " glass dead load
$\mathrm{T}_{\mathrm{d}}=\mathrm{D}=6.5 \mathrm{psf}^{*} * \mathrm{H}_{\mathrm{g}}+3.8$ plf (base shoe + glass in base shoe)
For ASTM F879 Cond AF screws
$\mathrm{T}_{\mathrm{m}}=\mathrm{M} /(1.375 " / 2)=1.455 \mathrm{M}=1,350-6.5 \mathrm{H}_{\mathrm{g}}$
$\mathrm{M}=\left(927.8-4.467 \mathrm{H}_{\mathrm{g}}\right) " \#$
Base shoe anchorage will control the maximum glass height and allowable load on glass for glass with moment strength over anchorage strength:

Determine maximum allowable glass height based on base shoe attached to steel:
$\mathrm{M}=\left(927.8-4.467 \mathrm{H}_{\mathrm{g}}\right) / 12=77.317-0.372 \mathrm{H}_{\mathrm{g}}=\mathrm{wH}^{2} / 2$ or PH
$\mathrm{H}=\mathrm{H}_{\mathrm{g}}+\mathrm{H}_{\mathrm{s}}=\mathrm{H}_{\mathrm{g}}+2.75^{\prime \prime}$
Solving for w , uniform load or P , concentrated load:
$\mathrm{w}=\left(77.317-0.372 \mathrm{Hg}_{\mathrm{g}}\right)^{* 2} 2\left(\mathrm{H}_{\mathrm{g}}+0.229^{\prime}\right)^{2}=\left(77.317-0.372\left(\mathrm{H} .0 .229^{\prime}\right)\right)^{*} 2 /(\mathrm{H})^{2}$
$\mathrm{P}=\left(77.317-0.372\left(\mathrm{H}_{-} .0 .229^{\prime}\right)\right) / \mathrm{H}$ solving
For SAE J429 Grade 8 bolt
$\mathrm{T}_{\mathrm{m}}=\mathrm{M} /(1.375 " / 2)=1.455 \mathrm{M}=2,385-6.5 \mathrm{H}_{\mathrm{g}}$
$\mathrm{M}=\left(1,639.18-4.467 \mathrm{H}_{\mathrm{g}}\right) " \#=136.60-0.372 \mathrm{H}_{\mathrm{g}}$
$\mathrm{w}=\left(136.60-0.372 \mathrm{Hg}_{\mathrm{g}}\right)^{* 2} /\left(\mathrm{H}_{\mathrm{g}}+0.229^{\prime}\right)^{2}=\left(136.60-0.372\left(\mathrm{H} .0 .229^{\prime}\right)\right)^{2} 2 /(\mathrm{H})^{2}$
$\mathrm{P}=\left(136.60-0.372\left(\mathrm{H}-0.229^{\prime}\right)\right) / \mathrm{H}$

Strength based on anchors at 12 " on center to steel.

B5B Shoe	ASTM F879 Cond AF		SAE J429 Grade 8	
$\mathbf{H}_{\mathbf{g}}(\mathbf{f t})$	$\mathbf{w} \mathbf{p s f}$	$\mathbf{P} \mathbf{p l f}$	$\mathbf{w ~ p s f}$	P plf
1	101.9	62.6	180.4	110.8
2	30.8	34.4	54.7	60.9
3	14.6	23.6	26.0	42.0
4	8.5	17.9	15.1	31.9
5	5.5	14.4	9.9	25.8
6	3.9	12.1	6.9	21.6

HORIZONTAL LOADS

Horizontal loads on glass are transferred by developing a force couple in the base shoe by generating a compressive bearing reaction at the edge of the glass in the base shoe and a balancing comressive bearing reaction against one base shoe leg (the reactions change to the opposite legs when the load is reversed).

For B5B base shoe - 1/2" glass
Allowable bearing based on compressive strength of the glazing strip -
$\mathrm{F}_{\mathrm{B}}=500 \mathrm{psi}$
$\mathrm{B}_{\mathrm{a}}=500 \mathrm{psi}^{*} 0.32 " * 12 "=1,920 \mathrm{plf}$
Couple lever arm $=1.82 "-0.32 "=1.5 "$
Maximum moment:
$\mathrm{M}_{\mathrm{a}}=1.5 " * 1,920 \mathrm{plf}=2,880 " \# / \mathrm{ft}$
Couple is able to develop the full allowable
 glass bending moment therefore won't limit the glass light size.

Base shoe strength won't determine allowable load or light size for any of the glass thicknesses or types that may be used with the B5B shoe.

1 3/4" X 3-1/2" SMOKE BAFFLE BASE SHOE B7B

For 3/4" glass
6063-T52 Aluminum extrusion
Fully tempered glass glazed in place, using the TaperLoc dry-glazing system.

Shoe strength - Vertical legs:
Glass reaction by bearing on legs to form couple.
Allowable moment on legs:
$\mathrm{M}_{\mathrm{a}}=\mathrm{S}_{\mathrm{l}} * \mathrm{~F}_{\mathrm{t}}$ or F_{c}
$\mathrm{F}_{\mathrm{t}}=\mathrm{F}_{\mathrm{c}}=12.5 \mathrm{ksi}(\mathrm{ADM}$ Table 2-23, Sec 3.4.4)
$\mathrm{S}_{\mathrm{l}}=12{ }^{2} * 0.375{ }^{2} 2 * / 6$
$=0.28125 \mathrm{in}^{3} / \mathrm{ft}$
$\mathrm{M}_{\mathrm{a}}=12.5 \mathrm{ksi}^{*} 0.28125 \mathrm{in}^{3} / \mathrm{ft}$
= 3,516"\#/ft
Tension connection between the legs from the through screw is required for the base shoe to support the full glass moment:
Screw tension strength -

$\phi \mathrm{T}_{\mathrm{n}}=0.75 * 60 \mathrm{ksi} * 0.0318 \mathrm{in}^{2}=1,431 \#$
$\mathrm{T}_{\mathrm{s}}=\emptyset \mathrm{T}_{\mathrm{n}} / 1.6=1,431 / 1.6=894 \#$
Check thread pullout - 1-5/8" screw length:
$\mathrm{P}_{\mathrm{not}}=1.2 \mathrm{DF}_{\mathrm{ty} 2}\left(0.25-\mathrm{t}_{\mathrm{c}}\right)+1.16 \mathrm{~A}_{\mathrm{sn}} \mathrm{Ft}_{\mathrm{u} 2}\left(\mathrm{t}_{\mathrm{c}}-0.125\right) \quad(\mathrm{ADM} 5.4 .2 .1 \mathrm{Eq} .5 .4 .2 .1-2)$
$\mathrm{P}_{\text {not }}=1.25 * 0.25 * * 16 \mathrm{ksi}(0.25-0.22)+1.16 * 0.539 * * 22 \mathrm{ksi}(* 0.22-0.125)=1,457 \#$
$\mathrm{P}_{\mathrm{ta}}=1,457 / 3=486 \#$
Moment capacity of base shoe with tension tie of a screw every 12 " on center:
$\mathrm{M}_{\mathrm{ta}}=3,516 " \#+486 \# *(3.5-0.815)=4,821 " \# / \mathrm{ft}<6,204$ " $\# / \mathrm{ft}$
When screwed through glass at 12 " on center the full allowable glass moment can't be achieved.
Leg shear strength @ bottom
$\mathrm{t}_{\text {min }}=0.375^{\prime \prime}$
$\mathrm{F}_{\mathrm{v}}=8.5 \mathrm{ksi}$ (ADM Table 2-24, Sec 3.4.20)
$\mathrm{V}_{\text {all }}=0.375$ "* 12 "/ft* 8.5 ksi
$=38.25 \mathrm{k} / \mathrm{ft}$
Base shoe anchorage:
For $1 / 4$ " machine screw to tapped steel
$\mathrm{T}_{\mathrm{n}}=\mathrm{A}_{\mathrm{sn}} * \mathrm{t}_{\mathrm{c}} * 0.6 * \mathrm{~F}_{\mathrm{tu}}$
where $\mathrm{t}_{\mathrm{c}}=$ steel thickness; $\mathrm{A}_{\mathrm{sn}}=0.539$ " and $\mathrm{F}_{\mathrm{tu}}=58 \mathrm{ksi}$ (A36 steel plate)
$\mathrm{T}_{\mathrm{n}}=0.539{ }^{*} * \mathrm{t}_{\mathrm{c}} * 0.6 * 58 \mathrm{ksi}=18.757 \mathrm{t}_{\mathrm{c}} \mathrm{k}$

Screw service tension load $=1,350 \#$ (page 17)
See page 18 for minimum steel support thickness.
Maximum allowable moment for 12 " on center spacing and direct bearing of base shoe on steel:
$\mathrm{M}_{\mathrm{a}}=1,350 \# *\left[1.78^{\prime \prime} / 2\right]=1,202^{\prime \prime} \#=100.125^{\prime} \#$ per anchor
For high strength bolt- SAE J429 Grade 8 or stronger:
$\mathrm{F}_{\mathrm{tu}}=150 \mathrm{ksi}$
$\mathrm{T}_{\mathrm{n}}=0.0318 \mathrm{in}^{2 *} 150 \mathrm{ksi}=4,770 \#$
$\mathrm{T}_{\mathrm{a}}=4,770 / 2=2,385 \#$
Plate thickness to develop screw tensile strength $=(4.77 \mathrm{k}) / 18.757=0.254$ " or nut on screw
$\mathrm{M}_{\mathrm{a}}=2,385 \#^{*}\left[1.78^{\prime \prime} / 2\right]=2,123^{\prime \prime} \#=176.89^{\prime} \#$ per anchor
When base shoe is used to hang glass overhead the dead load will reduce the allowable moment because of the screw tension used to support the dead load:
$\mathrm{T}_{\mathrm{t}}=\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{m}} \leq 1,350 \#$
Checked based on $3 / 4$ " glass dead load
$\mathrm{T}_{\mathrm{d}}=\mathrm{D}=9.8 \mathrm{psf}^{*} \mathrm{H}_{\mathrm{g}}+6.2 \mathrm{plf}$ (base shoe + glass in base shoe)
For ASTM F879 Cond AF screws
$\mathrm{T}_{\mathrm{m}}=\mathrm{M} /(1.78 " / 2)=1.1236 \mathrm{M}=1,350-9.8 \mathrm{Hg}_{\mathrm{g}}$
$\mathrm{M}=\left(1,201.5-8.72 \mathrm{Hg}_{\mathrm{g}}\right)$ "\#
Base shoe anchorage will control the maximum glass height and allowable load on glass for glass with moment strength over anchorage strength:

Determine maximum allowable glass height based on base shoe attached to steel:
$\mathrm{M}=\left(1,201.5-8.72 \mathrm{Hg}_{\mathrm{g}}\right) / 12=100.125-0.727 \mathrm{H}_{\mathrm{g}}=\mathrm{wH}^{2} / 2$ or PH
$\mathrm{H}=\mathrm{Hg}_{\mathrm{g}}+\mathrm{H}_{\mathrm{s}}=\mathrm{Hg}_{\mathrm{g}}+3.5^{\prime \prime}$
Solving for w , uniform load or P , concentrated load:
$\mathrm{w}=\left(100.125-0.727 \mathrm{Hg}_{\mathrm{g}}\right)^{2} 2 /\left(\mathrm{Hg}_{\mathrm{g}}+0.292^{\prime}\right)^{2}=\left(100.125-0.727\left(\mathrm{H} .0 .292^{\prime}\right)\right)^{2} 2 /(\mathrm{H})^{2}$
$\mathrm{P}=\left(100.125-0.727\left(\mathrm{H} .0 .292^{\prime}\right)\right) / \mathrm{H}$ solving
For SAE J429 Grade 8 bolt
$\mathrm{T}_{\mathrm{m}}=\mathrm{M} /(1.78 " / 2)=1.1236 \mathrm{M}=2,385-9.8 \mathrm{H}_{\mathrm{g}}$
$\mathrm{M}=\left(2,122.65-8.72 \mathrm{Hg}_{\mathrm{g}}\right) " \#=176.8875-0.727 \mathrm{Hg}_{\mathrm{g}}$

$\mathrm{P}=\left(176.8875-0.727\left(\mathrm{H}_{-} .0 .292^{\prime}\right)\right) / \mathrm{H}$

Strength based on anchors at 12 " on center to steel.

B7B Shoe	ASTM F879 Cond AF		SAE J429 Grade 8	
$\mathbf{H}_{\mathbf{g}}(\mathbf{f t})$	$\mathbf{w} \mathbf{p s f}$	P plf	$\mathbf{w ~ p s f}$	P plf
1	119.1	76.9	211.1	136.3
2	37.6	43.1	66.8	76.5
3	18.1	29.8	32.2	53.1
4	10.6	22.7	18.9	40.5
5	6.9	18.2	12.4	32.7
6	4.8	15.2	8.7	27.4
7	3.6	13.0	6.5	23.6

ALTERNATIVE ATTACHMENTS

The base shoes may be attached to substrate other than steel by substituting appropriate anchors. Alternative anchors may be designed and the allowable loading calculated using the methods shown in this report.

ALTERNATIVE ANCHOR SPACING

The moment capacity of the anchorage for spacing other than 12 " on center may be calculated directly based on $\mathrm{M}_{\mathrm{a}}=\mathrm{M}_{\text {table }}{ }^{*} 12 /($ spacing in inches)
$\mathrm{M}_{\text {table }}=$ moment from the table for the specific fastener and base shoe.

WOOD SUBSTRATE:

Attachment to solid wood framing, density $\mathrm{G} \geq 0.50$ (Douglas Fir, Southern Pine or similar):
Cut thread wood screw $1 / 4$ " withdrawal strength in accordance with the National Design
Specification for Wood Construction Table 11.2B
$\mathrm{W}=172$ \#/in
$\mathrm{C}_{\mathrm{d}}=1.6$ For wind load and impact live loads
determine required embed depth for an effective tension strength ≥ 894 \#
USE 1/4" X 5" WOOD SCREWS
Screw embed length Ls = 6-0.815" = 5.185"
$\mathrm{T}_{\mathrm{a}}=5.185 \% *\left(1.6^{*} 172 \# / \mathrm{in}\right)=1,427 \# \leq 1,350 \#$ (screw allowable tension load)
Embedment to develop full screw tension strength-
$e=1350 /\left(1.6^{*} 172\right)=4.906$ "
Screws shall be lubricated with soap and a $1 / 8$ " pilot hole shall be drilled prior to installing to prevent screw failure during installation.
Same allowable loads as ASTM F879 machine screws to steel.

For reduced screw embedment the allowable load shall be multiplied by:
actual embedment/4.906"
Minimum allowable screw embedment is 2.5 ".
For wood species with specific gravity less than 0.5 allowable loads shall be multiplied by:
$\mathrm{G}^{2} / 0.25$
where $\mathrm{G}=$ specific gravity of wood species used.
Or embedment length may be increased based on:
$\mathrm{e}=4.906 * 0.25 / \mathrm{G}^{2}$

Note: For wood species with specific gravity greater than 0.5 the above equation may be used to calculate a reduced embedment depth.

TO CONCRETE:

Use Hilti Kwik HUS-EZ (KH EZ) 1/4" x 3.5" (ESR-3027)
Minimum concrete strength is 3,000 psi and $2.5 "$ nominal anchor embedment.
Concrete Breakout strength:
$\mathrm{N}_{\mathrm{cb}}=\left[\mathrm{A}_{\mathrm{Nc}} / \mathrm{A}_{\mathrm{Nco}}\right] \psi_{\mathrm{ed}, \mathrm{N}} \psi_{\mathrm{c}, \mathrm{N}} \psi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}$
$\mathrm{A}_{\mathrm{Nc}}=1.5 * 1.92 " * 2 * 1.5 * 2 * 1.92=33.18$ (assumes minimum edge distance of $2.88 "$)
$\mathrm{A}_{\mathrm{Nco}}=9 * 1.92^{2}=33.18 \mathrm{in}^{2}$
$\psi_{\text {ed, }, \mathrm{N}}=1.0$
$\psi_{\mathrm{c}, \mathrm{N}}=1.0$
$\psi_{\mathrm{cp}, \mathrm{N}}=1.0$
$\mathrm{N}_{\mathrm{b}}=24 * \sqrt{3000} * 1.92^{1.5}=3,497 \#$
$\emptyset \mathrm{N}_{\mathrm{cb}}=0.65 * 33.18 / 33.18 * 1.0 * 1.0 * 0 * 3,497=2,273 \#$
$\mathrm{T}_{\mathrm{s}}=\emptyset \mathrm{N}_{\mathrm{cb}} / 1.6=2,273 / 1.6=1,421 \#$
Pullout strength per ESR-3027:
$\mathrm{N}=2348 * \sqrt{ }(3000 / 2500) / 1.095=2572$
$\mathrm{T}_{\mathrm{s}}=0.65 * 2572 / 1.6=1,045 \#$
$\mathrm{M}_{\mathrm{A}}=1045^{*}(1.375 / 2)=718.4^{\prime \prime} \#=59.87^{\prime} \#$ B5B Shoe
$\mathrm{M}_{\mathrm{A}}=1045^{*}(1.78 / 2)=930$ " $\#=77.5^{\prime} \#$ B7B Shoe
Ratio of strength to concrete as to steel :
$r=1,045 / 1,350=0.774$
Allowable load for anchorage to concrete with Hilti Kwik HUS-EZ (KH EZ) 1/4" x 3.5 " anchors.

	B5B shoe		B7B shoe	
$\mathbf{H}_{\mathbf{g}}(\mathbf{f t})$	$\mathbf{w} \mathbf{~ p s f}$	$\mathbf{P ~ p l f}$	$\mathbf{w ~ p s f}$	$\mathbf{P} \mathbf{~ p l f}$
1	78.9	48.5	92.2	59.5
2	23.9	26.6	29.1	33.3
3	11.3	18.3	14.0	23.0
4	6.6	13.9	8.2	17.5
5	4.3	11.2	5.3	14.1
6	3.0	9.3	3.7	11.8

